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A new form of dynamic response has been observed in some simple experiments
with a lightly damped rotating cylinder in a current. The response is orbital with a
period several times the structural natural period and an amplitude ranging up to
many diameters. It is mainly dependent on the ratio of current velocity to cylinder
surface velocity, α, and the reduced velocity, Vr (the ratio of current velocity to the
product of natural frequency in water and diameter). Big orbital responses occur
with 0.25 < α < 0.5 and Vr > 5, and are accompanied by the expected large static
response. To understand the flow mechanisms causing this response computational
simulations have been made for two-dimensional laminar flow and the experimental
response characteristics are qualitatively reproduced. Streamline and vorticity contour
plots are output through a cycle and are related to instantaneous values of lift and
drag coefficients and α (all based on flow relative to the cylinder). The movement of
the stagnation point away from and towards the cylinder surface with intermittent
wake formation in a cycle causes a large lift variation which is mainly responsible for
the dynamic response. The variation of lift coefficient with α (as defined above) shows
a generally negative gradient, and a pronounced hysteresis loop when substantial
response occurs for α & 0.25. The computations show that a small-amplitude, high-
frequency response may also be superimposed on the high-amplitude, low-frequency
response, most noticeably for α . 0.25. This is consistent with a simple potential-flow
idealization of the lift force. For α ∼ 0.2 a large dynamic response, not observed
in the experiments, was produced in the computations due essentially to attached
boundary-layer behaviour.

1. Introduction
For deep-water offshore oil exploration the possibility of using a drillstring without

an outer casing is of operational interest. It poses the hydrodynamic problem of
a flexibly mounted rotating cylinder in a current, which has not previously been
investigated to the authors’ knowledge, and is of fundamental interest.

Elementary theoretical considerations are first addressed, in § 2. It is shown that
the effect of the rotation of the cylinder is to produce two new circular modes of
vibration, one at a higher frequency than the previous natural frequency of vibration,
and one at a lower. Whether either can be self-exciting in a current will depend
on non-elementary (i.e. non-potential-flow) considerations. These are first discussed
in § 3 for the simpler case of a non-responding (fixed-axis) cylinder, using two-
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Figure 1. Forces on a cylinder moving in a circular orbit: (a) non-rotating, (b) rotating.

dimensional laminar flow computations, which are compared with published results.
Experimental results with a responding cylinder are then presented in § 4, and the cases
of large self-excited response are highlighted. In § 5 our two-dimensional laminar-flow
computations for the responding case are compared with the experimental results and
in § 6 corresponding force and flow characteristics are discussed.

2. Elementary theoretical considerations
The motions of a cylinder in two dimensions, with circulation, is concisely treated

in Milne-Thomson (1968, § 9.24), using complex variables. That treatment could
be simply extended to cover the present case in which the cylinder is effectively
constrained by a spring. From a physical point of view, however, it is more instructive
to consider the balance of radial forces during orbital motion (i.e. motion with the
cylinder behaving like a skipping rope).

Consider first the case when the cylinder is not rotating, so that there is no
circulation around it, at least initially. As the cylinder executes a circular orbit about
its rest position, with angular frequency Ωo and radius r, the centrifugal force shown
in figure 1(a) will be balanced by the spring stiffness, thus

mrΩ2
o = kr,

giving

Ωo =
√
k/m =

√
k/[(1 + β)ρπD2/4], (1)

where m is the mass and added mass, which is, assuming potential flow, (1+β)ρπD2/4,
ρ is the density of the fluid, βρ the density of the cylinder, D is its diameter, k is the
restoring stiffness; m and k are per unit length of cylinder. There is a similar circular
mode in the other direction, and an arbitrary elliptical motion can be synthesized by
a suitable linear combination of these two modes, in the appropriate phase.

The advantage of these circular modes over the conventional rectilinear modes in
the x- and y-directions shown (which arise as solutions of the conventional equations
of motion in those coordinates, see (6) and (7) below) can be seen when we consider
a cylinder which is rotating (at an angular frequency ω, say). If we assume a zero-
slip condition at the cylinder surface, then the potential flow around it will have a
circulation ωπD2/2 (we can more generally allow for an arbitrary circulation simply
by replacing ω by cLω, given the definition of cL later in this paper). Thus if the
circular mode now has angular frequency Ωω , in the same sense as ω, the lift force
will be ρrΩωωπD

2/2 (see for example Batchelor (1967), equation 6.4.26) as shown in
figure 1(b). Thus the equilibrium of radial forces now gives

mrΩ2
ω = kr + ρrΩωωπD

2/2,
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giving

Ω2
ω − 2Ωω(ρωπD2/4)/[(1 + β)ρπD2/4]− Ω2

o = 0,

Ω2
ω − 2[R/(1 + β)]ΩoΩω − Ω2

o = 0,

}
(2)

where R = ω/Ωo is the ratio of the angular rotational speed of the cylinder to the
angular orbital speed of vibration (i.e. the angular frequency of vibration) of the
non-rotating cylinder. (Again, if we wish to allow for arbitrary circulation around the
cylinder, we can replace R with cLR.) We can readily solve the quadratic equation as

Ωω = Ωo(R/(1 + β)±√R2/(1 + β)2 + 1) (3)

so the original circular modes of angular frequency Ωo in either direction become
a circular mode of higher angular frequency than Ωo in the same sense as ω, and
one with a lower angular frequency than Ωo in the opposite sense to ω. When the
parameter R/(1 + β) is large, we can write

Ωω ' Ωo[R/(1 + β)](1± (1 + [R/(1 + β)]−2/2))

' Ωo[2R/(1 + β)] or − Ωo/[2R/(1 + β)]. (4)

It is the latter mode, with the cylinder orbiting slowly in the opposite sense to its
rotation, with stiffness and lift forces almost cancelling, that will particularly concern
us.

We will also wish to consider the effect of a current of velocity V , say. For
consistency with earlier work on non-responding (fixed-axis) cylinders, we non-
dimensionalize by the surface velocity on the cylinder ωD/2, and write α = V/(ωD/2).
Also for consistency with earlier work on flexibly mounted cylinders, we use the con-
ventional ‘reduced velocity’ Vr = 2πV/(ΩoD). Thus we can express our parameter R
above as R = ω/Ωo = Vr/(πα).

Since we can write the potential-flow lift force in vector notation as

ρΓ i × (V − v) = ρΓ i × V − ρΓ i × v, (5)

where Γ is the circulation, i is a unit vector along the cylinder axis, V is the current
velocity vector and v is the cylinder velocity, we can see that the effect of the current
is simply to produce an additional steady lift force, which is independent of the
cylinder velocity. Thus with potential flow, a current should simply produce a steady
sideways (i.e. cross-current) offset of the cylinder, without affecting the orbital motion
discussed above.

The final elementary consideration is the mechanical damping on the cylinder. It
is well known from the theory of whirling shafts that this can be either ‘external’ or
‘internal’ (see Bishop 1959, equation 40). Both give a symmetric contribution to the
damping matrix (i.e. a dissipative contribution in contrast to the lift force considered
in figure 1(b) which gives a skew-symmetric contribution to the damping matrix,
which does not dissipate energy), but the latter also gives a skew-symmetric (i.e.
destabilizing) contribution to the stiffness matrix (see (6) and (7) below).

The effective damping produced by non-potential-flow effects in the fluid is ad-
dressed in the remainder of this paper. We should remark that the nonlinearities in
this effective damping are in principle likely to give rise to complex dynamic phenom-
ena in certain cases, such as co-existing limit cycles, and even chaotic motion. The
simpler case of unimodal galloping is discussed in Thompson & Stewart (1986, § 4.4),
and Thompson (1982) describes a bimodal flutter more analogous to the present
case. It is not, however, the purpose of the present paper to explore these interesting
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phenomena. Rather, we have made an initial investigation of the problem only, by
means of a relatively limited series of experiments and computations.

3. Non-responding rotating cylinder
This flow has received much attention over the years (from Betz 1925 and Prandtl

& Tietjens 1934) and is defined by α = Ucur/Urot and a Reynolds number, usually
Recur = UcurD/ν where Ucur is the current velocity, Urot is the cylinder surface velocity,
D is cylinder diameter and ν is the kinematic viscosity of water.

A computational study has been made with Recur = 103 by Chew, Cheng & Luo
(1995), based on the vortex method. In this study the finite-volume method of Lien &
Leschziner (1994) for unsteady flow with second-order-accurate advection has been
modified for two-dimensional flow around a cylinder. A polar mesh is used with
periodic boundary conditions in the angular direction and exponential stretching
in the radial direction, giving refinement near the surface to resolve boundary-layer
behaviour. Such a mesh was previously used by Smith & Stansby (1988) for the vortex
method. For this application cylinder rotation has been incorporated by specifying
the cylinder surface velocity and, at the outer boundary, by adding the velocity due
a bound potential vortex to the incident flow velocity. (The influence of the bound
vortex had little effect possibly because the outer boundary was at a radius of at least
20D from the centre.)

In order to investigate the fundamental nature of these flows through computational
simulation, laminar conditions are chosen where computation is known to be accurate.
(Turbulence modelling is notoriously difficult in wake regions and three-dimensional
direct numerical simulation is not yet a practical computing proposition.) Here meshes
with 80 × 80 and 120 × 120 cells with an inner radial mesh spacing of

√
2ν∆t (the

diffusion length scale), where ∆t is the time step, gave force variations with time which
were identical almost to within plotting accuracy. Figure 2 shows streamline plots
with Recur = 200 and α = 0.2, 0.25, 0.3, 0.5 and 1.0. This is approximately the highest
Reynolds number for which the flow is expected to be two dimensional and laminar
according to the theoretical analysis of Karniadakis & Triantafyllou (1992) (for a
non-rotating cylinder). For α = 0.2 the stagnation point is detached from the cylinder
surface (and on the y-axis); the streamlines are similar to those of a point vortex in
a uniform stream. For α = 0.25 the stagnation point has moved closer the cylinder
surface and a steady wake has started to form with α = 0.3. Note that the stagnation
point never actually reaches the surface due to the surface velocity. For α = 0.5 the
wake has increased in size but remains attached, fluctuating slightly about a mean
position. For α = 1 vortex shedding has become established, generating fluctuating
lift and drag forces as shown in figure 2(f). Note here that the drag fluctuation is at
the same frequency as the lift, in contrast to the well-known case without rotation
where the drag frequency is twice that of the lift. The dependence of these flows on
α is consistent with the early experimental visualizations shown in Prandtl & Tietjens
(1934).

Computed variations of mean lift and drag with α are shown in figure 3 with
Recur = 200 and 103 (the latter for comparison with the results of Chew et al. 1995),

Figure 2. Computed streamline plots for a non-responding rotating cylinder with Recur = 200:
(a) α = 0.2, (b) α = 0.25, (c) α = 0.3, (d) α = 0.5, (e) α = 1.0; (f) lift and drag force variation with
time for α = 1.0 (force normalized by ρU2

rotD/2). Flow is from left to right.
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Figure 2. For caption see facing page.
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Figure 3. Computed mean force coefficients for a fixed rotating cylinder. (a) cL and (b) CD
variation with α; �, Recur = 200; +, Recur = 103; �, Chew et al. (1995), Recur = 103.

where the drag coefficient is defined in the usual way, CD = drag/(0.5ρU2
curD), and lift

coefficient is defined as the fraction of the inviscid Magnus force, cL = lift/(ρUcurΓ )
where Γ = πDUrot. From the present computations, for small α, CD is very small and
cL → 1 as α → 0 in agreement with the theoretical (asymptotic) analysis of Moore
(1957). This is in marked contrast to the results of Chew et al. (1995) for the lower α
values.
Recur = 200 is also chosen to investigate dynamic response.

4. Experiments with dynamic response
4.1. Experimental rig

The cylinder was allowed to respond dynamically with a known mode shape. To
achieve this a rigid aluminium cylinder was supported by a thin (2 mm diameter) wire,
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Figure 4. Sketch showing cylinder rotation apparatus.

with its axis concentric with that of the cylinder, and forced to rotate by a variable
low-speed electric motor. A sketch is shown in figure 4. The density of aluminium of
2720 kg m−3 is close to values of practical interest. Cylinders of 12.7 mm and 25.4 mm
diameter were used, both of 1.02 m length. Damping tests were conducted in air and
water giving the logarithmic decrement δ. In air the damping due to viscosity is
negligible and δ is effectively due to internal damping, values between 0.009 and 0.01
being obtained. In water this is not the case as hydrodynamic damping is significant,
but the natural frequency is obtained.

A steady current flume was used with a 1 m × 1 m cross-section and a nearly
uniform velocity profile, with less than 3% variation in the working section and a
turbulence intensity of about 4%. The water depth was always close to 0.75 m. The
cylinder is supported on a frame above the flume and the largest response is thus
close to the bed. The gap between the bed of the flume and the end of the cylinder
(when vertical) was always close to 1 cm. The range of Reynolds number Recur was
between 800 and 4700.

The displacements at the cylinder base are obtained by video analysis with the
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movement of the base over a square mesh on the flume bed recorded. Geometric
distortions are accounted for in obtaining the actual displacements.

4.2. Experimental results

The predominant motion of the cylinder was a slow orbit combined with a steady
offset, as described in § 2 above. After the motion had settled down to a steady state,
the peak-to-peak amplitudes of the orbit of the cylinder end in the in-line (x) and
cross-flow (y) directions were measured, and are given in figure 5, as a function of
different values of ᾱ, for different values of Vr . Note that with a responding cylinder
ᾱ is used to define Ucur/Urot since α will later be used to define the value based on
the instantaneous velocity relative to the cylinder. Results with the 25.4 mm diameter
cylinder for Vr = 10.97 are broadly similar to those for the 12.7 mm diameter cylinder
with Vr = 9.45, indicating that end effects (and therefore effects due to aspect ratio)
and effects due to differences in Reynolds number do not have a marked influence.

A quite distinct result is the sudden increase in dynamic response as ᾱ increases,
at ᾱ = 0.23–0.26. If Vr is small enough a significant response does not occur. The
maximum dynamic response occurs at ᾱ = 0.3–0.4 and this decreases relatively slowly
as ᾱ increases further, becoming small (relatively) at ᾱ = 0.5–0.6.

The response due to vortex shedding (of the kind associated with a Kármán vortex
street) which is likely for ᾱ > 0.5 is not considered here. With a non-rotating cylinder
such a response is known to occur for 5 < Vr < 10, approximately, and for the mass
and damping values of these experiments responses of 1–2 diameters, peak-to-peak,
would be expected, e.g. Govardhan & Williamson (2000) (and have also been observed
with the present rig). Responses of similar magnitude have been observed with the
rotating cylinder for ᾱ ∼ 1 although it is known that the details of the vortex shedding
wakes are different as a result of rotation.

Turning to the steady offset of the cylinder, as opposed to its orbital motion, this
was defined as the average of the peak excursions. Mean lift and drag coefficients cL
and CD have been obtained as shown in figure 6, by converting these steady offsets
to forces using the known ‘effective’ stiffness of the cylinder arrangement. This was
deduced from the still-water natural periods and includes the effect of the weight
of the pendulum partially immersed in water as well as the stiffness of the cylinder
support. The added mass coefficient for the small-amplitude motion of a damping
test may be assumed to be very close to unity, e.g. Keulegan & Carpenter (1958).
Due account is taken of the contributions of the internal mechanical damping to the
stiffness matrix, see (6) and (7) below (this means that the in-line response can occur
with CD = 0, provided cL 6= 0). Standard modal analysis (e.g. Clough & Penzien
1975) is used with the assumption that force is uniform over the span of the cylinder.
Some wind-tunnel (nominally two dimensional) measurements by Betz (1925) for
a non-responding cylinder (with Recur = 5 × 104) are also shown, where care had
been taken to remove end effects. These coefficients are generally a little greater than
those obtained in our experiments where some scatter is apparent. This is particularly
noticeable for CD at smaller α values where the drag force is small in relation to
lift. Note that with Vr = 25.05 dynamic response is negligible and these results are
thus most appropriate for comparison with the Betz experiments, showing closest
agreement.

The period of oscillation T is considerably larger than the natural period To.
Values of T/To for the 12.7 mm and 25.4 mm diameter cylinder are shown in figure 7
with the potential-flow formula given by (3) in § 2 above. The value of cL is given by
the least-squares fit in figure 6. The potential-flow formula can be seen to be up to
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Figure 5. Variation of peak-to-peak amplitude with velocity ratio, ᾱ, for the 12.7 mm diameter
cylinder: �, Vr = 9.45; �, Vr = 14.03; 4, Vr = 25.05; and for the 25.4 mm diameter cylinder;
+, Vr = 5.22; ×, Vr = 10.97; *, Vr = 16.1. (a) In-line response x/D, (b) cross-response y/D.

30% less than the experimental measurements while showing similar trends with ᾱ
and Vr .

Since the cylinder is inclined to the vertical while it is orbiting there will inevitably
be gyroscopic effects. However the analysis given in the Appendix shows this to be a
very small effect.

5. Computed dynamic response
The finite-volume method with cylinder rotation described in § 3 has been extended

to include dynamic response. The outer velocity boundary condition now includes the
cylinder-axis (translational) velocity as the flow relative to the cylinder is computed;
the outer pressure gradient is thus also adjusted to include the effect of cylinder
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Figure 6. (a) Mean lift coefficients cL and (b) mean drag coefficients CD from experiments as a
function of ᾱ, using mean response and modal analysis. 25.4 mm cylinder: �, Vr = 5.2; +, Vr = 11.0;
�, Vr = 16.1; 12.7 mm cylinder: ×, Vr = 9.5; 4, Vr = 14.0; ◦, Vr = 25.05; *, Betz (1925). The full
line is a least-squares fit given by cL = 0.355− 0.204ᾱ+ 0.022ᾱ2 (excluding Betz’s results).

acceleration. To obtain the force on the actual responding cylinder the Froude–Krylov
force is subtracted from the computed force.

The mass/spring/damper system defining the motion with two degrees of freedom
is given, as described in § 2 above, by

ẍ+ 2cωnẋ+ ω2
nx− 2cωωny = Fx/m, (6)

ÿ + 2cωnẏ + ω2
ny + 2cωωnx = Fy/m, (7)

where m is now simply the mass per unit length and Fx, Fy are forces per unit length
in the x- and y-directions; ωn and c are in vacuo/air values, although the value of
natural frequency in water is still used to define Vr .

The experimental situation of the 12.7 mm diameter cylinder with Vr = 14.03,
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Figure 7. The ratio of orbital period to natural oscillation period T/To against velocity ratio ᾱ: for
the 12.7 mm diameter cylinder: �, Vr = 9.45; �, Vr = 14.03; and for the 25.4 mm diameter cylinder:
×, Vr = 10.97. Theoretical curves of T/To from (3) are shown with the line type corresponding to
those joining the experimental points.

for ᾱ = 0.15, 0.2, 0.25, 0.3, 0.4 and 0.5 and δ = 0.01, is chosen for computation,
covering a wide range of responses. In addition, the cases with α = 0.3 and 0.5 are
repeated with Vr = 25, corresponding to another experimental situation with the
12.7 mm diameter cylinder. The orbital nature of the computed response can be seen
in the plots of y against x which are given in figure 8. A large response always
builds up after the cylinder is released and the dynamic component either decays
or reaches a periodic state. The ratios of orbital period to the natural period of
oscillation T/To corresponding to Figures 8(a)–8(g) are 14.7, 8.8, 6.0, 4.6, 3.3, 2.6 and
6.6 respectively. The ratios according to the potential-flow formula given in (3) are
12.5, 8.9, 6.8, 4.7, 3.1, 2.5, and 8.1, with cL values from figure 3 and are in approximate
agreement with those from the computations. The agreement is somewhat better than
the corresponding comparison for experimental results shown in figure 7.

A high-frequency oscillation is also quite evident with ᾱ = 0.15 to 0.5 for Vr=14.
According to (3) the ratio of the high-frequency oscillation to the main orbital
frequency, corresponding to figures 8(a)–8(f), should be 156, 82, 45, 22, 9.7, 6.3
respectively and basic manual calculation from these figures shows broadly similar
values.

Dynamic response with ᾱ = 0.5 decays rapidly for Vr = 25 (figure 8h) and rather
slowly for Vr = 14 (figure 8f). For the latter, dynamic response in the experiments
has become small and ᾱ = 0.5 appears to be the upper limit for dynamic response.
With ᾱ = 0.3, dynamic response in the x-direction is greater for Vr = 25 than for
Vr = 14 while dynamic response in the y-direction is similar.

The responses are somewhat greater than the experimental results for peak-to-peak
amplitudes shown in figure 5, particularly bearing in mind that the experiments
show tip response and the computed (uniform-mode) results compare with the mid-
depth experimental results (assuming uniform loading). Note, however, that while in
the experiment the steady lift force will be uniformly distributed along the cylinder
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(assuming uniform circulation), like the current velocity, by virtue of (5), the oscillatory
lift force will increase in proportion to the cylinder velocity, and thus in proportion
to the distance from the pivot. This will produce a corresponding difference in the
steady and oscillatory responses, compared to the two-dimensional case defined by
(6) and (7). Nevertheless these and other runs reproduce qualitatively most features
of the experimental response, apart from the case with ᾱ = 0.2 which is discussed
in the following section; the differences in magnitude are not unexpected given the
idealization in the computations, i.e. two-dimensional, laminar and low Reynolds
number (Recur = 200) flow, compared with the linear-mode, transitional/turbulent
and higher Reynolds number, three-dimensional flows of the experiments. A, B,
C and D, corresponding to times of maximum x response, maximum y response,
minimum x response and minimum y response respectively, are marked on figure 8
for ᾱ > 0.25 to relate to plots in the following section.

The ‘instantaneous’ cL and α due to flow relative to the cylinder are of interest
to determine whether quasi-steady assumptions are of value. It is well known, for
example, that the flow-induced oscillation known as galloping resulting from the
variation of lift with angle of incidence for non-circular sections is a quasi-steady
phenomenon (see Thompson & Stewart 1986, § 4.4). That is a unimodal vibration,
however, whereas the present case is bimodal, which adds very considerably to the
complexity of the analysis. The matter is nevertheless explored in the following section,
where it is shown that the relation between instantaneous cL and α is not a quasi-
static one (there being a marked hysteresis loop). The gradient is generally negative,
which is analogous to the requirement for galloping in the quasi-static unimodal case,
despite the much greater complexity of the stability problem.

6. Computed flow and force characteristics
Instantaneous lift and drag coefficients and α are based on the relative onset

velocities: urel = Ucur − ẋ, vrel = −ẏ, so that the angle of incidence θ = tan−1(vrel/urel)

and velocity magnitude U =
√
u2
rel + v2

rel , gives an instantaneous α = U/Urot. If the
x, y forces are denoted by Fx, Fy then the corresponding lift and drag forces transverse
to and in line with the instantaneous onset velocity are given by

FL = Fy cos (θ)− Fx sin (θ),

FD = Fx cos (θ) + Fy sin (θ).

Lift is then normalized so that instantaneous cL = FL/(ρUΓ ) and cD (as distinct from
CD) is normalized in the same way for comparison with cL.

First the variations of x and y response with time are shown in figure 9 for the
eight cases of figure 8 (with ᾱ > 0.15). Points A, B, C and D relate to those on
figure 8. The cylinder axis is fixed in position up to time tUrot/D = 5, before release.

A typical example of force variation with time for periodic oscillation with ᾱ & 0.25
is shown in figure 10 for Vr = 14 and ᾱ = 0.4. Figure 10(a) shows the x and y force
variation with time and figure 10(b) the variations of cL, cD and α with time. Points A,
B, C, D on figure 10(a) coincide with maximum x force, maximum y force, minimum

Figure 8. Variations of computed y response with x, both normalized by D: (a) ᾱ = 0.15 and
Vr = 14. (b) ᾱ = 0.2 and Vr = 14. (c) ᾱ = 0.25 and Vr = 14. (d) ᾱ = 0.3 and Vr = 14. (e) ᾱ = 0.4 and
Vr = 14. (f) ᾱ = 0.5 and Vr = 14. (g) ᾱ = 0.3 and Vr = 25. (h) ᾱ = 0.5 and Vr = 25.
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Figure 9. Variation of y/D (upper curve) and x/D (lower curve) with (tUrot/D).
ᾱ and Vr values as figure 8.

x force and minimum y force respectively corresponding to maximum x response,
maximum y response, minimum x response and minimum y response in figure 9(e).
Points A, B, C, D are also marked on figure 10(b) and do not coincide with maximum
and minimum cL (which is based on flow relative to the cylinder).

From figure 10(b) it is clear that a rapid increase in α around time A coincides
with a rapid decrease in cL. Streamline and vorticity patterns (for flow relative to
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stantaneous cL, cD and α with time (tUrot/D) for ᾱ = 0.4 and Vr = 14.0. Force is normalized by
ρU2

rotD/2.

the cylinder) are shown in figure 11 for times tUrot/D = 370, 405, 410, 420, 425, 430,
435 and 475. For the first two times with ‘small’ α, corresponding to position D, the
stagnation point is well below the cylinder, typical of a non-responding cylinder with
α < 0.25. As α increases rapidly the stagnation point moves upwards towards the
cylinder and an attached wake starts to form at about time 410. By time 420 a wake
has formed corresponding with position A. This is associated with a marked decrease
in cL. With high α around position B the attached wake fluctuates rapidly about some
slowly varying position and this is responsible for the high-frequency components in
the force variation, the period being about 10D/Urot. By time 475, corresponding with
position C, the wake is about to collapse and the stagnation point moves away from
the cylinder as the cycle is completed.

Plots of cL against α are shown in figure 12 (except for ᾱ = 0.15 and 0.2) with
positions A, B, C and D marked. These are plotted for the second half of the time
series where the motion has become periodic for all cases except that with ᾱ = 0.5. It
can be seen that the gradient is generally negative and the periodic dynamic response
is associated with a pronounced hysteresis loop. It is interesting to see that the high-
frequency behaviour is quite repeatable from one cycle to another. The cL vs. α curves
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Figure 11 (a). For caption see facing page.

effectively define the response since cD is very small in relation to cL. Unfortunately
the curves are quite complex and different for each case. The variation of cL with α in
a cycle is thus far removed from that for a non-responding cylinder with a hysteresis
loop which becomes more pronounced as the dynamic response becomes bigger.

The cases with ᾱ 6 0.2 are now considered. For ᾱ = 0.2 the periodic dynamic
response in figure 8(b) shows high-frequency components superimposed on the slowly
varying oscillation. This is in contrast to the experiments at this ᾱ which show neg-
ligible large-amplitude dynamic response. Variations of force with time are plotted
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Figure 11. (a) Streamline and (b) vorticity plots for ᾱ = 0.4 and Vr = 14.0 at tUrot/D = 370, 405,
410, 420, 425, 430, 435, 475 (as marked on the figure). The flow is relative to the cylinder.

in figure 13 showing marked high-frequency components. The variations of instan-
taneous cL and α with time are very spikey as the velocity relative to the cylinder
can be very small; presenting these parameters is not of value. An example of the
nature of the flow (relative to the cylinder) in a high-frequency region is shown in
the streamline and vorticity plots in figure 14 where the stagnation point circulates
around the cylinder and at one point disappears as the relative velocity is almost
zero. The vorticity close to the cylinder shows attached coherent structures devel-
oping and collapsing. With ᾱ = 0.15 the large-amplitude dynamic response shown
in figure 8(a) is clearly decaying to a steady position, as in the experiments. A
high-frequency, low-amplitude dynamic response is however still apparent. A high-
frequency response was also observed in the experiments although at the time it
was thought to be a result of slight misalignment of the rotation mechanism as
a hydrodynamic cause was considered unlikely. The small-scale vorticity structures
which are formed interact with the high-frequency response which could in turn feed
the low-frequency, high-amplitude response. However in the experiments, response
was, negligible for ᾱ < 0.25 and this could be because three-dimensional and tur-
bulence effects at much higher Reynolds numbers destroy the small-scale vorticity
structures.
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Figure 12. Plots of instantaneous cL against α. ᾱ and Vr values as figure 8.

The case with Vr = 5.2 and ᾱ = 0.3 was also computed to determine whether
dynamic response decreases as Vr is reduced as in the experiments. Peak-to-peak
responses of about 2D in the x- and y-directions occurred and the cL vs. α curve
still showed a hysteresis loop. Thus the response (static as well as dynamic) becomes
smaller as Vr is reduced, but it has not become as small as in the experiments, where
it is negligible for ᾱ = 0.3 although it picks up at ᾱ ∼ 0.4.

It should be mentioned that these computations are extremely time-consuming.
The high-frequency flow structures need to be resolved, requiring a small time step,
while the slow oscillations require long times to cover several cycles. The above runs
required 4/5 days of computation time (each) on a modern workstation (Dec Alpha
600). The mesh with 80 × 80 cells was generally used with a time step given by
∆tUrot/D = 0.05. While such a complete Navier–Stokes solution is necessary with
wake formation (for ᾱ & 0.25), for small ᾱ a method based on matched asymptotic
expansions would be highly efficient and worth investigating.

In this study we have been concerned with dynamic (and static) response for
constant rotation. It is clear that with impulsively started rotation large dynamic
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Figure 13. Variations of x and y forces with time (tUrot/D) for ᾱ = 0.2 and Vr = 14.0.
Force is normalized by ρU2
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response generally occurs initially even when it eventually decays. Changes in rotation
speed which are not impulsive may also produce significant dynamic response. This
merits further investigation.

7. Conclusions
Some simple experiments have revealed a new form of orbital response for a

rotating cylinder in a current for 0.25 < ᾱ < 0.5. The cylinder undergoes orbital
motion with a frequency much lower than the structural natural frequency. A two-
dimensional computational study shows how rapid changes in lift coefficient cL are
associated with rapid movement of the stagnation point towards the cylinder surface,
causing wake formation. This eventually ceases and the stagnation point moves
away from the surface, completing the cycle. The flow is far from quasi-steady with
a pronounced hysteresis loop in the cyclic variation of cL with α when dynamic
response occurs. Small-amplitude orbital motion can co-exist with low-frequency,
high-amplitude orbits, the orbits having opposite rotation, and is most marked for
ᾱ . 0.25. This phenomenon is consistent with a simple potential-flow idealization of
lift behaviour. The computed response at ᾱ = 0.2 associated with attached boundary-
layer structures was not observed in the experiments; this difference could be due to
turbulence and three-dimensional effects in the experiments destroying the small-scale
structures.
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Figure 14. (a) Streamline and (b) vorticity plots for ᾱ = 0.2 and Vr = 14.0 at tUrot/D = 2012.5,
2015, 2017.5, 2021.25 (as marked on the figure). The flow is relative to the cylinder.
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Appendix. Gyroscopic effects
Since the cylinder in the experiments is orbiting about a pivot, like an inverted top,

it is in principle necessary to consider gyroscopic effects. Consider first the case when
this effect should be zero, which is when the cylinder is not rotating, but is merely
orbiting as shown in figure 1(a), with an angular speed Ω. Its angular velocity then
has no component along the cylinder axis, but merely a normal component Ω sin θ,
where θ is the inclination of the cylinder from the vertical. Its angular momentum
about the pivot is thus IΩ sin θ in the same direction, where I is the moment of inertia
in that direction, again about the pivot. For small θ the rate of change of this angular
momentum is IΩ2θ. Since I = mL3/3 (where L is the length of the cylinder and m its
mass per unit length) this rate of change of angular momentum is equal, as it should
be, to the moment about the pivot of the centrifugal force shown in figure 1. This
force varies along the cylinder and totals mL2Ω2θ/2, acting at a point 2L/3 from the
pivot.

In § 2 the two-dimensional hydrodynamic added mass is included in m; the same
applies to the present case as shown in Rainey (1995), where the modification to this
two-dimensional added mass term due to angular velocity is show to vanish provided
the axial water velocity along the cylinder is zero (see Rainey 1995 equations (1) and
(3)), as it is here. Hence m = (1 + β)ρπD2/4, as in § 2.

Consider now the case when the cylinder is rotating, with angular velocity ω, as
shown in figure 1(b), thereby introducing a gyroscopic effect. It will now have an
additional angular momentum I ′ω, where I ′ is the moment of inertia of the cylinder
about its axis, which clearly has no hydrodynamic component and is thus LβρπD4/32.
For small θ, the rate of change of angular momentum is −I ′ωΩθ, so in total the rate
of change of angular momentum is IΩ2θ(1− (I ′/I)(ω/Ω)). Thus the gyroscopic effect
is equivalent to modifying the centrifugal force in figure 1 by a factor

(1− (I ′/I)(ω/Ω)) = (1− (3/8)(D/L)2(β/[1 + β])(ω/Ω))

In § 2, this factor will be applied to m and thus to the existing multiplier (1 + β) in
equations (2)–(4). It is therefore also the correction factor to the frequency ratio in
(4) and thus approximately equal to the correction factor to the ratio T/To plotted
in figure 7.

Numerically, D/L is at most 0.025, β/(1+β) = 0.73, and −ω/Ω is at most 70 (when
D/L = 0.025), so the correction factor is (1 + 0.012) or 1.2%. Thus the experimental
results in this paper do not require significant correction for gyroscopic effects.
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